# Elementary maths for GMT 

## Calculus

Part 2.2: Function analysis

## Function analysis

- For analyzing and drawing a given function $\mathrm{f}(\mathrm{x})$
- Find zero crossings ( $f(x)=0$ )
- Find zero crossings of the derivative (extrema) [and sometimes of higher order derivatives], look at sign around them
- Look at behavior for $x \rightarrow \pm \infty$ (or at domain ends)
- Look at singularities (where the function is undefined, typically from a division by zero)
- Draw some likely points


## Example

- The function $f(x)=x^{2}-3 x+2$
- function zero crossings

$$
\begin{array}{r}
f(x)=0 \\
x^{2}-3 x+2=0 \\
(x-1)(x-2)=0 \\
\text { at } x=1 \vee x=2
\end{array}
$$

## Example

- The function $f(x)=x^{2}-3 x+2$
- derivative zero crossings

$$
f^{\prime}(x)=2 x-3=0
$$

$$
\text { at } x=3 / 2
$$

- sign

$$
\frac{3}{2}
$$



$$
\left(\frac{3}{2}, f\left(\frac{3}{2}\right)\right)=\left(\frac{3}{2},-\frac{1}{4}\right)
$$

## Example

- The function $f(x)=x^{2}-3 x+2$
- when $x \rightarrow \pm \infty, f(x) \rightarrow+\infty$
- no singularity
- draw some points (e.g. for $x=0$ and 3 )



## Parametric curves

- Of the form

$$
\binom{x}{y}=\binom{x(t)}{y(t)}
$$

- Analysis similar to explicit functions
- Find zero crossings of component functions
- Look at derivative (= tangent vector!)
- Look at behavior for $t \rightarrow \pm \infty$ (or at domain ends)
- Look at singularities
- Draw some likely points


## Example

$$
\binom{x(t)}{y(t)}=\binom{\cos t}{\sin t} \text { for }-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

- Examine $x(t)=0, y(t)=0$
- Examine $t= \pm \frac{\pi}{2}$
- No singularity



## Example

$\binom{x(t)}{y(t)}=\binom{\cos t}{\sin t}$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$
derivative:
$\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{-\sin t}{\cos t}$
example for $t=0$ :
tangent vector $\binom{x^{\prime}(0)}{y^{\prime}(0)}=\binom{0}{1}$


